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Stability and bifurcation of Couette flow between concentric rotating cylinders 
are investigated for the case when the ratios of their radii K and angular velo- 

cities Q are nearly equal to unity. The limiting problem in the linear theory 
when R ----f 1 and !I + 1 is the problem of convection stability in the layer [I]. 

We find that this is also correct in the case of a nonlinear problem. Below we 
show that solution of the problem of free convection yields the principal term of 

the expansion of the secondary flow (Taylor vortex) in the powers of a small pa- 

rameter 6 = R - 1. Therefore the results of [2. 31 can be used to provide, in 
the present case, a strict justification for the use of the Liapunov-Schmidt me- 
thod to compute the Taylor vortices. The numerical results obtained for the cri- 
tical Reynolds’ number and the amplitude of the secondary flow provide a good 
illustration of the asymptotic passage as 6 --) 0. 

1. Statement of the problem, Let a viscous incompressible fluid of unit 

density fill the space between two infinite concentric cylinders of radii R, and R,, ro- 

tating at the angular velocities Q2, and a2,. Let R -+ 1 and h2 -+ 1 , SO that 

(a - 1) / (R - 1) = c = const, R = R, i RI, 62 = 62, / al 

We choose R, - RI as the characteristic length snd 62, (R, - RI) as the charac- 
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teristic angular velocity, Then the Couette flow assumes, in the cylindrical coordinates 
(r, 8, 2) , the following form: 

vo = (0, %e, O), uoe = ar + b / r (1.1) 
BR2- 1 

a==~x, b=-- (Q-i)R2 
(P-1) 6%’ 

Re = & (Rz - RI)’ _ SXh~Rl~ 
V V 

Here 6 = R - 1 is a small parameter when E -+ 1. A strict proof exists [4, 51 of 

the fact that the Couette flow is unstable when the Reynolds* number Re is suf~ciently 

large. The value Re, at which loss of stability takes place is called the critical value. 

We shall seek a steady state, rotationally symmetric solution of the Navier-Stokes 

equations, different from (1. l), in the form 

Vl = vg + v, PI = PO -t- P (1.2) 

(where PO is the pressure corresponding to the Couette flow), for the supercritical values 
of Ke c= Re, + a’. Substituting (1.2) into the Navier-Stokes equations, we obtain 
the following relations for v and p : 

V%@ +8- - a*, b2 

1 + Pa 3P (1 -+ PV 
Ve = (Re, + g2) X 

L 
(v, V) G + 2eu, + &*V%> 1 

V%, - $ = (Re, + Ed) (v, V> u, 

We expand the function uos (T) into the following series in small parameter 6 

00 

a = 2 aJjrat b = 5 bJT2 
n=1 it=0 n=D 

?I51 

71, - a,,, + pa,+ 2 fin-mir (---PI”, n = I, 2,. . . 
?7k=O 

a0 = (c + .2) / 2, b. =: -c / 2, a, z---b, =3c.i4 
Qn = -b, = (--A)% / 2n+1, n = 2, 3, , , . 

2, The asymptotic8 of the problem on stability with S-to. 
We shall show that the solution of the system (1.3) is analytic in F and S in the neigh- 
borhood of e = 0 and 6 = 0. Let us investigate the resulting situation using a more 
general approach. 

Let the following operator equation be given in the Hilbert space H : 
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Aou + &u - hKu = AL (u, u) (2.1) 

Here 14s is a self-conjugate, positive-definite linear operator, Al and K are linear 

operators and L is a bilinear operator ; Ao, A,, K and L are, generally speaking, un- 

bounded. Let &-‘A, and daelK be completely continuous on H, and AO*‘L (u, v) 
completely continuous on HI @ Ht. Here HI denotes the energy space of the opera- 
tor Ao. i”e. it is the closure of the domain of definition of A, in the metric (u, v)H1= 

(ADu, V)H. Let &be a simple eigenvalue. cp the cor~$~Rding eigenvector of the lin- 
ear problem 

A&J+ 4g,--h,Kcp=0 @.2) 

and Q the eigenvector ofthe conjugate problem. Since h* is simple, we can assume that 

~~~~rrn 
f= ‘j - Setting h = h, -I- a2 and inverting the operator Ao, we reduce (2.1) 

u + &-%u - 5,Ao-%u = E~A,-~Ku + (h, + e2) Ao-lL (II, u) (2.3) 

where all operators are completely continuous. 

Lemma. Let the following conditions hold : 
1) operators A,, K and L are analytic functions of the small parameter 6 inthe 

region 1 S 1 < 6, and 140 is independent of 6. 

2) for any value of 6 the eigenvalue h, (6) is simple and 

(L (9, VP>, $)H = 0 

3) C2s > 0 when 6 = 0, where C,, is a constant defined by (2.10). Then for 
small values of 6 , exactly two small solutions of (2.3) exist (which tend to zero when 

E -+ 0). Both solutions are analytic in E and 6 in the neighborhood of the point (0, 0), 

Proof, We shall seek a solution of (2.3) in the form 

U=-@+v, (v, \PfH = CJ 
From (2.3) we obtain 

Let us introduce the space H, of vectors u E H for which (u, 9frr = 0. We note that 
the operator (I + A@d, - h,Ao--‘K) acts from H into rjr,. For any f E H, Eq. (2.4) 
has a solution, i.e. an operator N exists such that 

v = Nf, (f, $)H = 0 (2.5) 

The operator N (see [6], chap. 7, Sect, 6) is analytic in 8. Substituting the expression 

for t into (2.5). we obtain a system of equations for v and r which is equivalent to 

(2.4) 
v= N(~%l;%v + GrA;'Kqi i_ (h, f E2) A,-%V -i-W, v + Trp))=TV (2.6) 

(Cul,1If\~ + k?~@;*Kq+ (A*+ 89 .qW+ Trp, vi-VP), %)H = 0 (2.7) 

When e and r are sufficiently small, the operator 2’ is a contraction operator in any 
sphere in H; of sufficiently small radius and with its origin at zero. In accordance with 

the theorem on implicit functions [?I the solution v of (2.6) can be sought in the form 

v= i vk@Yr, vo0 -i 0 
k,l=O 

The coefficients vkl can be found from (2.6) and (2,7), e. g. 

(2.8) 
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vlf5 = 0, VOl = 0, v*2 = h*NA+L h&J, qP), Vll = 0, l l l 

Substituting (2.8) into (2.7) we obtain 

la + p = 0 

5 = (C,, e2 f c,, 73 + Cr,yd + 0 (rV))“z, i + i = 4 

The constants Clj can be expressed in terms of rpl 4 and vkt, e.g. 

(2.9) 

(2.10) 

Solution of I2.9) reduces to solving the follo~ng equations : 

@I (v, T. 8, 6) = r + s = 0 CL 11) 
@2 (v, T, 8, S) 3 T - 5 = 0 c&w 

The system of equations (2.6) and (2.11) for determining v and ‘r can be written in 
the form 

F (z, E, S) = 0 (2.13) 

z = b, ‘r) E HI 83 R, F = (I - T, QI) 

When 6 = 0, the condition GO > 0 implies that a solution z (E, 0) = (v fsf, 7 (is)) of 
(2.13) exists which is analytic in E, and z (0, 0) = 0. With E = 0 and arbitrary 6 , we 
find that z (0, 6) = 0 is a solution of (2.13). The eigenvalue A, (6) and the correspond- 

ing eigenvectors cp and Ip are analytic in 6 by virtue of the fact that h, f&I is simple 
[6]. Thus F is analytic in E and 6 in the nei~hborh~d of z = 0, e = 0, 6 = 0, 

F (0, 0, 0) = 0 and 

F,’ (0, 0, 0) = 
(1 - TV),’ (v- T+ 1 () 

% (D;, !() 0 1 = 

Using the theorem on implicit functions [7] we find that a unique solution of (2.13) 
exists, analytic in 8 and S in the neighborhood of e = 0, 6 = 0. The second solution 

is found in the similar manner from the system (2.6) (2.12). and this completes the 
proof of the lemma. 

The system (1.3) can be written in the form (2.1) by setting 

4, = IN’, Al = II (&G,) , IL = 2lIG, 

L (VT v)= I3 (v, c’)v+ 
( & G4 

6 
- ii Us, 

0 

G,v = (-z$, v,q,, 0) 

Here n is an operator of orthogonal projection of the solenoidal vectors with a null 
normal components at the boundary, on a subspace of Ws(2’. The domain of definition 
of the operstors if@, A,, 15 and K is a set of solenoidal vectors belonging to Ws@) , 
vanishing at the boundary. 

The lemma implies that the solution of (1,3) is analytic in 6 and E in the neighbor- 
hood of E = 0, 6 = 0. This solution can ~nven~ently be sought in the form 
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The Reynolds’ number Re = Re, + $ can also be written in the form of the series 

Re = i Re.&P + ea (2.16) 
11 y-0 

We introduce the stream function $0 and the function To as follows : 

Then from (X.3), (2.14) and (2.16) we obtain the expressions for 40 and 20 

(2.17) 

The system (2.17) coincides with the nonlinear ~~ur~tion problem in the case of a 
convective morion in a liquid layer heated from below if - 4 ( Re$ao is taken as 
the Rayleigh number and the Prandtl number is assumed equal to unity. Thus the solu- 

tion of (1.3) coincides with the accuracy of up to the infinitesimals of the order of 6, 
with the solution of the nonlinear problem of convection stability in a layer., The prob- 
lems of investigating the system (2.17) and computing the convective motions in a fluid 

were studied by a number of authors (see [8], chap, 1, Sect.29). 

By virtue of the analyticity, we obtain 

czo = g+ + 6g*, + 62g*, -i-_ . . . G. 18) 

The constant g, corresponds to the problem of convection and a rigorous proof that 

g, > 0 is given in @I. From (2.183 it follows that c,o > 0 for sufficiently small 8. 
Using the results of [2, 31, we arrive at the following theorem. 

Theorem. If the gap between the rotating cylinders is sufficiently small and their 
angular velocities sufficiently close to each other, then the Couette flow becomes unsta- 
ble when the Reynolds number passes through its critical value. A new. steady state flow 
appears, unique to within the translation along the cylinders’ axis, stable at Re > kie* 
and analytic in the small parameter I = (Re - Re*)‘iz. 

3. Numerical computations. A secondary solution 2n / 61 -periodic in 2 

was sought for a finite value of 6 , in the form of the Liapunov-Schmidt series 

v = jj Eh-vh_, v1= p,rp 
k=l 
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where cp is the eigenvector of the linearized problem corresponding to (1.3). The vec- 
tor cp satisfies the normalization condition 

rrl2a R 1 3 

I I 
cpr (r, 2) r dr dz = $ 

-n/la1 

The amplitude fir and Re, were computed using the method given in [3]. The asymp- 

totic values of p1 and Re, for 6 -+ 0 were found using the results of the computations 

for the convective motion of a fluid in a layer. All computations were performed for 
a = 3.115 and 62 = 1 f R2 - 0.056 ,and the results are 

R=l 1.15 1.2 1.25 1.3 1.35 1.5 
Re, = 130.68 126.95 126.05 125.29 124.66 124.14 123.18 

pi.103 = 0.0217 0.0226 0.0555 0.1118 0.1990 0.3248 1.0175 

When 6 --f 0 , the values of pr and Re, tend to their limiting values. 

The authors thank I. V. Bulaev and G, K.Ter-Grigor’iants for permission to use their 
results. 
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